224 research outputs found

    Estimated glomerular filtration rate correlates poorly with four-hour creatinine clearance in critically ill patients with acute kidney injury.

    Get PDF
    Introduction. RIFLE and AKIN provide a standardised classification of acute kidney injury (AKI), but their categorical rather than continuous nature restricts their use to a research tool. A more accurate real-time description of renal function in AKI is needed, and some published data suggest that equations based on serum creatinine that estimate glomerular filtration rate (eGFR) can provide this. In addition, incorporating serum cystatin C concentration into estimates of GFR may improve their accuracy, but no eGFR equations are validated in critically ill patients with AKI. Aim. This study tests whether creatinine or cystatin-C-based eGFR equations, used in patients with CKD, offer an accurate representation of 4-hour creatinine clearance (4CrCl) in critically ill patients with AKI. Methods. Fifty-one critically ill patients with AKI were recruited. Thirty-seven met inclusion criteria, and the performance of eGFR equations was compared to 4CrCl. Results. eGFR equations were better than creatinine alone at predicting 4CrCl. Adding cystatin C to estimates did not improve the bias or add accuracy. The MDRD 7 eGFR had the best combination of correlation, bias, percentage error and accuracy. None were near acceptable standards quoted in patients with chronic kidney disease (CKD). Conclusions. eGFR equations are not sufficiently accurate for use in critically ill patients with AKI. Incorporating serum cystatin C does not improve estimates. eGFR should not be used to describe renal function in patients with AKI. Standards of accuracy for validating eGFR need to be set

    Clinical review: Biomarkers of acute kidney injury: where are we now?

    Get PDF
    The recognition that acute kidney injury (AKI) is a significant independent risk factor for morbidity and mortality has resulted in a substantial number of publications over the past 5 years or more. In no small part these have, to a degree, highlighted the inadequacy of conventional markers of renal insufficiency in the acute setting. Much effort has been invested in the identification of early, specific AKI markers in order to aid early diagnosis of AKI and hopefully improve outcome. The search for a 'biomarker' of AKI has seen early promise replaced by a degree of pessimism due to the lack of a clear candidate molecule and variability of results. We outline the major studies described to date as well as discuss potential reasons for the discrepancies observed and suggest that evolution of the field may result in success with ultimately an improvement in patient outcomes

    Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.

    Get PDF
    Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection

    Validation of a continuous infusion of low dose Iohexol to measure glomerular filtration rate: randomised clinical trial.

    Get PDF
    INTRODUCTION: There is currently no accurate method of measuring glomerular filtration rate (GFR) during acute kidney injury (AKI). Knowledge of how much GFR varies in stable subjects is necessary before changes in GFR can be attributed to AKI. We have designed a method of continuous measurement of GFR intended as a research tool to time effects of AKI. The aims of this crossover trial were to establish accuracy and precision of a continuous infusion of low dose Iohexol (CILDI) and variation in GFR in stable volunteers over a range of estimated GFR (23-138 mL/min/1.73 m(2)). METHODS: We randomised 17 volunteers to GFR measurement by plasma clearance (PC) and renal clearance (RC) of either a single bolus of Iohexol (SBI; routine method), or of a continuous infusion of low dose Iohexol (CILDI; experimental method) at 0.5 mL/h for 12 h. GFR was measured by the alternative method after a washout period (4-28 days). Iohexol concentration was measured by high performance liquid chromatography/electrospray tandem mass spectrometry and time to steady state concentration (Css) determined. RESULTS: Mean PC was 76.7 ± 28.5 mL/min/1.73 m(2) (SBI), and 78.9 ± 28.6 mL/min/1.73 m(2) (CILDI), p = 0.82. No crossover effects occurred (p = 0.85). Correlation (r) between the methods was 0.98 (p 10.3% depict evolving AKI. If this were applicable to AKI, this is less than the 50% change in serum creatinine currently required to define AKI. CILDI is now ready for testing in patients with AKI. TRIAL REGISTRATION: This trial was registered with the European Union Clinical Trials Register (https://www.clinicaltrialsregister.eu/), registration number: 2010-019933-89

    Effects of spoilage on nitrogen and carbon stable isotopes signatures of the clam Ruditapes decussatus

    Get PDF
    Fish and seafood products are highly susceptible to post-mortem spoilage due to autolytic reactions at start, then microbiological activity and eventually oxidative reactions. Chemical and microbiological parameters are usually used to assess quality and make decisions for protecting public health, but they lack precision in defining which spoilage pathway is occurring at each moment. The objective of this work was to assess the effects of spoilage reactions on nitrogen and carbon stable isotopes in the grooved carpet shell clam, Ruditapes decussatus, and compare them to biochemical indicators of seafood deterioration, in order to better understand the relations between the different spoilage pathways during commercial storage conditions. Clams were kept in a refrigerator at 5 ºC, to simulate normal commercial storage conditions, and sampled in the beginning of the experiment, and after eight, ten and twelve days. Moisture, condition index, percentage edibility, total volatile basic nitrogen (TVB-N), pH, nitrogen and carbon percentages and stable isotopes were determined for each sampling moment. Stable isotope analyses were performed using a Costech Elemental Analyzer (ECS 4010) coupled to a ThermoFinnigan Delta V Advantage. Stable isotopes analysis, especially for nitrogen, proved to be a good tool for the study of clam deterioration. Nitrogen stable isotopes results showed a relation with other spoilage indicators, such as pH and TVB-N, and allowed identifying spoilage specific pathways, such as amino acids decarboxylation and production of volatile nitrogen compounds.info:eu-repo/semantics/publishedVersio

    Elevated Paracellular Glucose Flux across Cystic Fibrosis Airway Epithelial Monolayers Is an Important Factor for Pseudomonas aeruginosa Growth.

    Get PDF
    People with cystic fibrosis (CF) who develop related diabetes (CFRD) have accelerated pulmonary decline, increased infection with antibiotic-resistant Pseudomonas aeruginosa and increased pulmonary exacerbations. We have previously shown that glucose concentrations are elevated in airway surface liquid (ASL) of people with CF, particularly in those with CFRD. We therefore explored the hypotheses that glucose homeostasis is altered in CF airway epithelia and that elevation of glucose flux into ASL drives increased bacterial growth, with an effect over and above other cystic fibrosis transmembrane conductance regulator (CFTR)-related ASL abnormalities. The aim of this study was to compare the mechanisms governing airway glucose homeostasis in CF and non-CF primary human bronchial epithelial (HBE) monolayers, under normal conditions and in the presence of Ps. aeruginosa filtrate. HBE-bacterial co-cultures were performed in the presence of 5 mM or 15 mM basolateral glucose to investigate how changes in blood glucose, such as those seen in CFRD, affects luminal Ps. aeruginosa growth. Calu-3 cell monolayers were used to evaluate the potential importance of glucose on Ps. aeruginosa growth, in comparison to other hallmarks of the CF ASL, namely mucus hyperviscosity and impaired CFTR-dependent fluid secretions. We show that elevation of basolateral glucose promotes the apical growth of Ps. aeruginosa on CF airway epithelial monolayers more than non-CF monolayers. Ps. aeruginosa secretions elicited more glucose flux across CF airway epithelial monolayers compared to non-CF monolayers which we propose increases glucose availability in ASL for bacterial growth. In addition, elevating basolateral glucose increased Ps. aeruginosa growth over and above any CFTR-dependent effects and the presence or absence of mucus in Calu-3 airway epithelia-bacteria co-cultures. Together these studies highlight the importance of glucose as an additional factor in promoting Ps. aeruginosa growth and respiratory infection in CF disease

    Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage

    Get PDF
    Background: Adipose tissue-derived stromal stem cells (ASCs) represent a promising regenerative resource for soft tissue reconstruction. Although autologous grafting of whole fat has long been practiced, a major clinical limitation of this technique is inconsistent long-term graft retention. To understand the changes in cell function during the transition of ASCs into fully mature fat cells, we compared the transcriptome profiles of cultured undifferentiated human primary ASCs under conditions leading to acquisition of a mature adipocyte phenotype. Methods: Microarray analysis was performed on total RNA extracted from separate ACS isolates of six human adult females before and after 7 days (7 days: early stage) and 21 days (21 days: late stage) of adipocyte differentiation in vitro. Differential gene expression profiles were determined using Partek Genomics Suite Version 6.4 for analysis of variance (ANOVA) based on time in culture. We also performed unsupervised hierarchical clustering to test for gene expression patterns among the three cell populations. Ingenuity Pathway Analysis was used to determine biologically significant networks and canonical pathways relevant to adipogenesis. Results: Cells at each stage showed remarkable intra-group consistency of expression profiles while abundant differences were detected across stages and groups. More than 14,000 transcripts were significantly altered during differentiation while ~6000 transcripts were affected between 7 days and 21 days cultures. Setting a cutoff of +/-two-fold change, 1350 transcripts were elevated while 2929 genes were significantly decreased by 7 days. Comparison of early and late stage cultures revealed increased expression of 1107 transcripts while 606 genes showed significantly reduced expression. In addition to confirming differential expression of known markers of adipogenesis (e.g., FABP4, ADIPOQ, PLIN4), multiple genes and signaling pathways not previously known to be involved in regulating adipogenesis were identified (e.g. POSTN, PPP1R1A, FGF11) as potential novel mediators of adipogenesis. Quantitative RT-PCR validated the microarray results. Conclusions: ASC maturation into an adipocyte phenotype proceeds from a gene expression program that involves thousands of genes. This is the first study to compare mRNA expression profiles during early and late stage adipogenesis using cultured human primary ASCs from multiple patients

    Clinical and pathological features of BRCA1 associated carcinomas in a hospital-based sample of Dutch breast cancer patients

    Get PDF
    Thus far, studies investigating the differences in tumour characteristics between breast cancer in BRCA1-carriers and other patients, have focused on highly selected groups of patients, potentially limiting the conclusions that can be drawn. Previously, we had identified 10 patients with BRCA1 germline mutations in a hospital-based series of 642 breast cancer patients not selected for age or family history. The aim of this analysis is to investigate the clinical and pathological features of these BRCA1 associated carcinomas as compared to other breast cancers in this representative sample. Tumours from patients with BRCA1 germline mutations (n= 10) were compared to an age-matched sample of other patients (n= 50) from the same cohort. The following characteristics were considered: axillary nodal status and tumour size, histologic parameters (tumour type, histologic grade, mitotic rate, tubule formation, nuclear grade, CIS and lymphangio invasion) and expression of several proteins (oestrogen and progesterone receptors, cyclin D1, p53, HER2/neu, E-cadherin). In BRCA1associated tumours receptors for oestrogen and progesterone were expressed less frequently (respectively P= 0.001 and P= 0.002) than in controls, which is in line with findings from other studies. Other differences were also in accordance with findings from other studies, although not statistically significant. We conclude that the features of BRCA1 associated tumours detected in a hospital-based series of breast cancer patients not selected for family history of age at diagnosis are similar to tumours in cases selected for family history or age at diagnosis. © 2001 Cancer Research Campaign  http://www.bjcancer.co

    Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H⁺ secretion

    Get PDF
    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3− transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3− removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3−, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD
    corecore